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c2ו = 8.
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log(xy)!ורכז = log(x) + log(y).

nרובעיכהארנ = log(n)םייקתמ1 ≤ n.)היצקודניאהתחנה(:

log(1) = 0 < 1

+nרובעתאזחיכונתעכ .)היצקודניאהדעצ(1

log(n+ 1) ≤ log(10n) | n ≥ 1 לכרובע 1 < 9n יכעודי

= log(10) + log(n)

= 1+ log(n)

≤ 1+ n | היצקודניאהתחנהבשמתשנ

≤ 2n

םא.יעבטnלכלתמייקתמאיההיצקודניאהדעציפלעו,1רובעתמייקתמהיצקודניאהתחנהשוניאר

log(n)ךכ ≤ 2nלכרובעnןכלויעבטlog(n) ∈ O(n)רובעn0 = c = 2.
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6ליגרת

log(n)יכהיצקודניאבוחיכוה ∈ O(n).

log(xy)!ורכז = log(x) + log(y).

nרובעיכהארנ = log(n)םייקתמ1 ≤ n.)היצקודניאהתחנה(:

log(1) = 0 < 1

+nרובעתאזחיכונתעכ .)היצקודניאהדעצ(1

log(n+ 1) ≤ log(10n) | n ≥ 1 לכרובע 1 < 9n יכעודי

= log(10) + log(n)

= 1+ log(n)

≤ 1+ n | היצקודניאהתחנהבשמתשנ

≤ 2n
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log(n)ךכ ≤ 2nלכרובעnןכלויעבטlog(n) ∈ O(n)רובעn0 = c = 2.


