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Motivation

Suppose we are serving the same clients every day.

Suppose some machines are better.
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Related Work

• Recently established framework

[HMN+25]

• Studied objectives:

• Completion time

• Lateness

• Number of late jobs
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Framework

Fair Repetitive Interval Scheduling

Input:

A single machine and n clients each has a job per day for a period of m days.

Every job has (ith day and jth client):

• processing time pi,j

• deadline.

A Quality of Service (QoS) performance measure Zi,j .

Output: Feasible and fair schedule.

*Fair: a schedule that guarantees every client that
∑
j≤m

Zi,j ≥ k.
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Problem Definition

Fair Repetitive Interval Scheduling

Input:

A single machine and n clients each has a job per day for a period of m days.

Every job has (ith day and jth client):

• processing time pi,j .

• deadline di,j .

A Quality of Service (QoS) measure: the number of JIT scheduled jobs per client .

Output: Feasible and fair schedule.

*Fair: a schedule that guarantees every client at least k JIT scheduled jobs .
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Example

Let the fairness parameter be 2 in this example.

We can schedule the jobs as follows such that all clients are served in at least 2 days.

Day 1 Day 2 Day 3

5



Example

Let the fairness parameter be 2 in this example.

We can schedule the jobs as follows such that all clients are served in at least 2 days.

Day 1 Day 2 Day 3

5



Fairness Parameter

Theorem 1

Fair Repetitive Interval Scheduling is polynomial-time solvable for k ∈ {0,m − 1,m}
and NP-hard otherwise.
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Fairness Parameter

Theorem 2

Fair Repetitive Interval Scheduling is NP-hard for k = 1 and m = 3.

Reduction from [2− 3] Bounded SAT:
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Fairness Parameter

Theorem 3

Fair Repetitive Interval Scheduling is polynomial-time solvable for k = m − 1.

Reduction to 2SAT:

• For every client j and day i we create xi,j .

• We create the conflict clause (¬xi,j1 ,∨¬xi,j2) if clients j1 and j2 are in conflict on day i .

• We create O(m2) validation clause for every client (xi1,j ,∨xi2,j) for 1 ≤ i1 < i2 ≤ m .
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Day-Independent Parameters

Theorem 4

Fair Repetitive Interval Scheduling is NP-hard also when di,j = dj .

It is polynomial-time solvable when either of the following additionally holds:

• The number of days m is constant.

• The processing times are day-independent pi,j = pj .
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Fair Slot Allocation

Theorem 5

Fair Repetitive Interval Scheduling is NP-hard also when pi,j = 2.

It is polynomial-time solvable when pj = 1

m

v1,j′ v2,j′ v3,j′

m

v1,j v2,j v3,j

m − k

w1,j′ w2,j′

m − k

w1,j w2,ju1,d1 u1,d2 u2,d3 u3,d4
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Treewidth

Theorem 6

Fair Repetitive Interval Scheduling is:

• NP-hard for a constant number of days m.

• NP-hard for a constant treewidth τ .

• FPT with respect to m + τ .
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The Conflict Graph

Day 1

2 3

1 4

Day 2

2 3

1 4

2 3

1 4

The Overall Conflict Graph

Day 3

2 3

1 4
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Discussion

Fairness is hard.

Interesting generalizations:

• Clients have different fairness-parameter.

• Multiple jobs per client.

• Multiple machines per day.
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