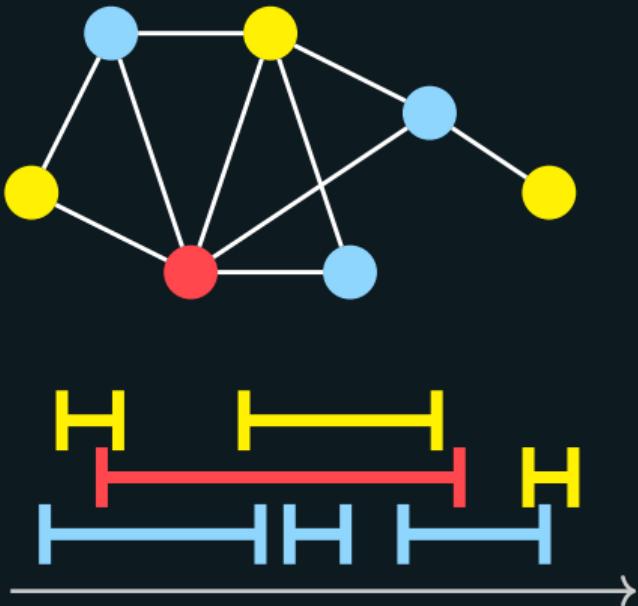


Fair Repetitive Interval Scheduling

Klaus Heeger, Danny Hermelin, Yuval Itzhaki, Hendrik Molter, Dvir Shabtay

Motivation

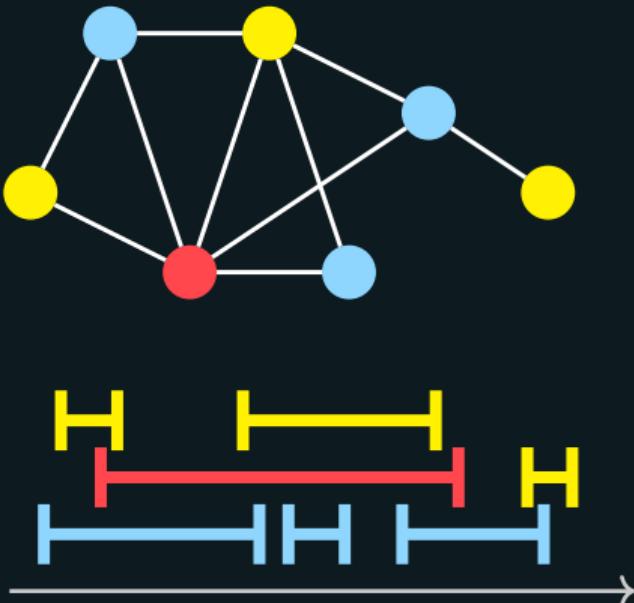
Suppose we are serving the same clients every day.



Motivation

Suppose we are serving the same clients every day.

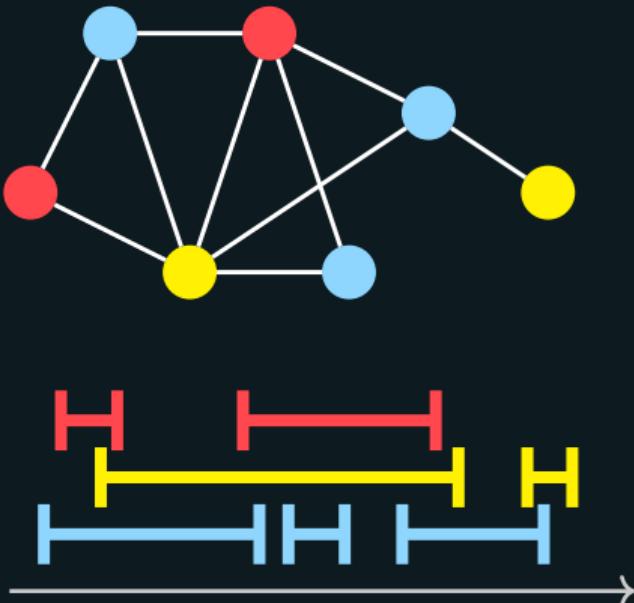
Suppose some machines are *better*.



Motivation

Suppose we are serving the same clients every day.

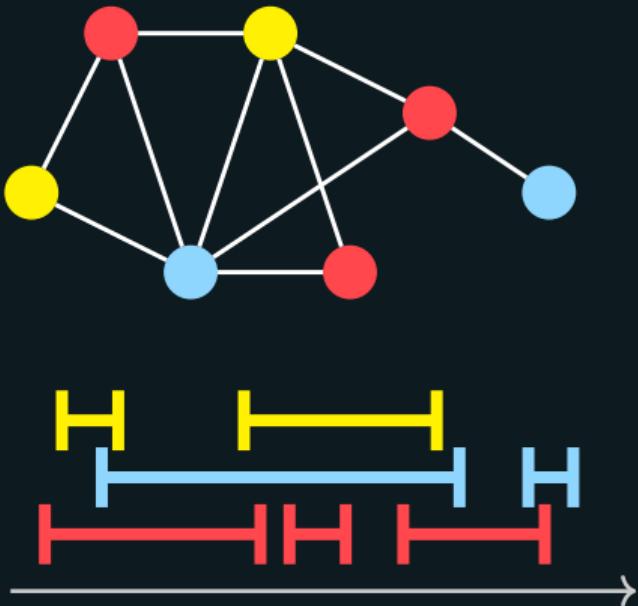
Suppose some machines are *better*.



Motivation

Suppose we are serving the same clients every day.

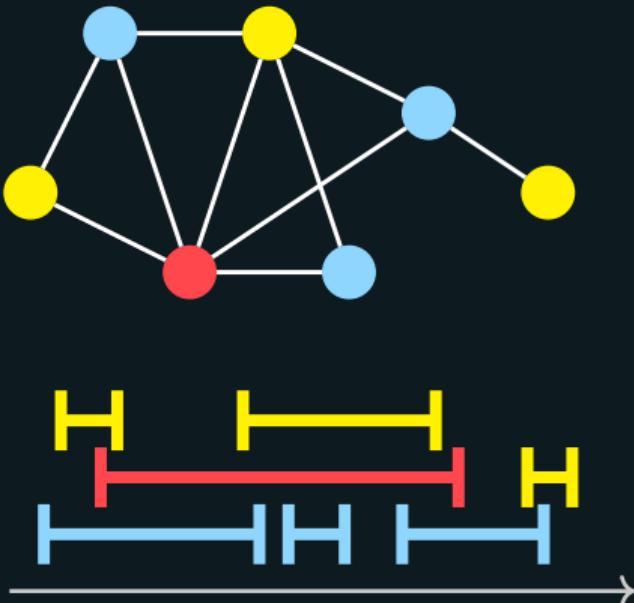
Suppose some machines are *better*.



Motivation

Suppose we are serving the same clients every day.

Suppose some machines are *better*.



Related Work

- Recently established framework
[HMN⁺25]

 European Journal of Operational Research
Volume 323, Issue 3, 16 June 2025, Pages 724-738

Discrete Optimization
Fairness in repetitive scheduling

Danny Hermelin ^a , Hendrik Molter ^b , Rolf Niedermeier ^c , Michael Pinedo ^d ,
Dvir Shabtay ^a

Show more

 Add to Mendeley Share Cite

<https://doi.org/10.1016/j.ejor.2024.12.052> Get rights and content

- Recently established framework [HMN⁺25]
- Studied objectives:

 European Journal of Operational Research

Volume 323, Issue 3, 16 June 2025, Pages 724-738

Discrete Optimization

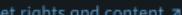
Fairness in repetitive scheduling

Danny Hermelin ^a , Hendrik Molter ^b , Rolf Niedermeier ^c , Michael Pinedo ^d ,
Dvir Shabtay ^a

Show more

 Add to Mendeley Share Cite

<https://doi.org/10.1016/j.ejor.2024.12.052>

Get rights and content 

- Recently established framework [HMN⁺25]
- Studied objectives:
 - Completion time
 - Lateness
 - Number of late jobs

 European Journal of Operational Research
Volume 323, Issue 3, 16 June 2025, Pages 724-738

Discrete Optimization
Fairness in repetitive scheduling

Danny Hermelin ^a , Hendrik Molter ^b , Rolf Niedermeier ^c , Michael Pinedo ^d ,
Dvir Shabtay ^a

Show more

 Add to Mendeley Share Cite

<https://doi.org/10.1016/j.ejor.2024.12.052> Get rights and content

FAIR REPETITIVE INTERVAL SCHEDULING

Input:

A single machine and n *clients* each has a job per day for a period of m days.

Every job has (i th day and j th client):

- *processing time* $p_{i,j}$
- *deadline*.

A Quality of Service (QoS) performance measure $Z_{i,j}$.

Output: Feasible and *fair* schedule.

*Fair: a schedule that guarantees every client that $\sum_{j \leq m} Z_{i,j} \geq k$.

Problem Definition

FAIR REPETITIVE INTERVAL SCHEDULING

Input:

A single machine and n *clients* each has a job per day for a period of m days.

Every job has (i th day and j th client):

- *processing time* $p_{i,j}$.
- *deadline* $d_{i,j}$.

A Quality of Service (QoS) measure: the number of JIT scheduled jobs per client .

Output: Feasible and *fair* schedule.

*Fair: a schedule that guarantees every client at least k JIT scheduled jobs .

Problem Definition

FAIR REPETITIVE INTERVAL SCHEDULING

Input:

A single machine and n *clients* each has a job per day for a period of m days.

Every job has (i th day and j th client):

- *processing time* $p_{i,j}$.
- *deadline* $d_{i,j}$.

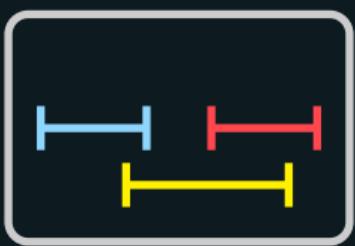
A Quality of Service (QoS) measure: the number of JIT scheduled jobs per client.

Output: Feasible and *fair* schedule.

*Fair: a schedule that guarantees every client at least k JIT scheduled jobs.

Example

Let the fairness parameter be 2 in this example.



Day 1

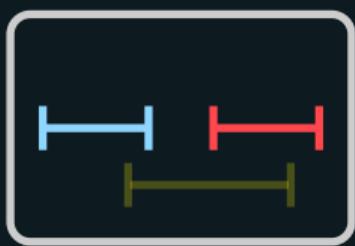
Day 2

Day 3

Example

Let the fairness parameter be 2 in this example.

We can schedule the jobs as follows such that all clients are served in at least 2 days.



Day 1



Day 2

Day 3

Theorem 1

FAIR REPETITIVE INTERVAL SCHEDULING *is polynomial-time solvable for $k \in \{0, m - 1, m\}$ and NP-hard otherwise.*

Fairness Parameter

$m = 1$	$(1,1)$									
$m = 2$	$(1,2)$	$(2,2)$								
$m = 3$	$(1,3)$	$(2,3)$	$(3,3)$							
$m = 4$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$						
$m = 5$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$					
$m = 6$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$				
$m = 7$	$(1,7)$	$(2,7)$	$(3,7)$	$(4,7)$	$(5,7)$	$(6,7)$	$(7,7)$			
	$k = 1$	$k = 2$	$k = 3$	$k = 4$	$k = 5$	$k = 6$	$k = 7$			

Fairness Parameter

$m = 1$	$(1,1)$					
$m = 2$	$(1,2)$	$(2,2)$				
$m = 3$	$(1,3)$	$(2,3)$	$(3,3)$			
$m = 4$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$		
$m = 5$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	
$m = 6$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$
$m = 7$	$(1,7)$	$(2,7)$	$(3,7)$	$(4,7)$	$(5,7)$	$(6,7)$
	$k = 1$	$k = 2$	$k = 3$	$k = 4$	$k = 5$	$k = 6$
						$k = 7$

Theorem 2

FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard for $k = 1$ and $m = 3$.*

Theorem 2

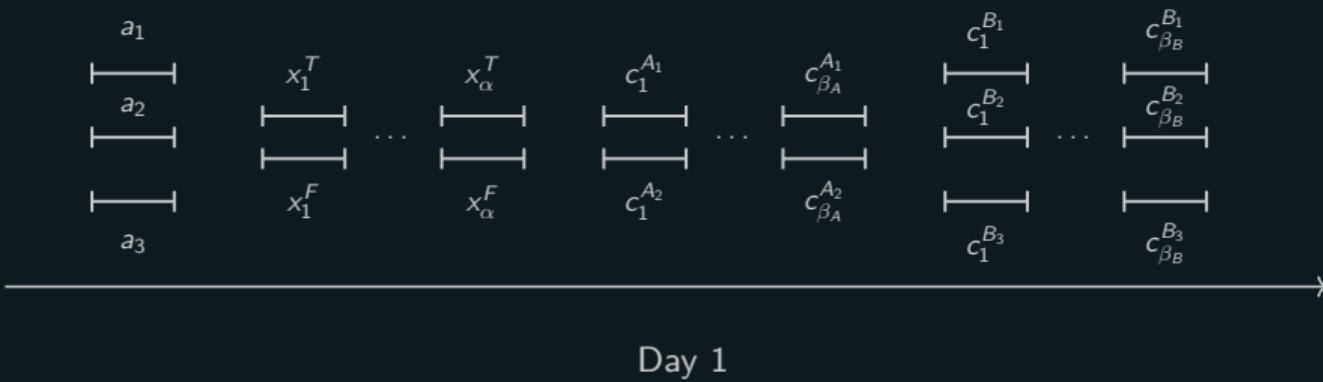
FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard for $k = 1$ and $m = 3$.*

Reduction from [2 – 3] BOUNDED SAT:

Theorem 2

FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard* for $k = 1$ and $m = 3$.

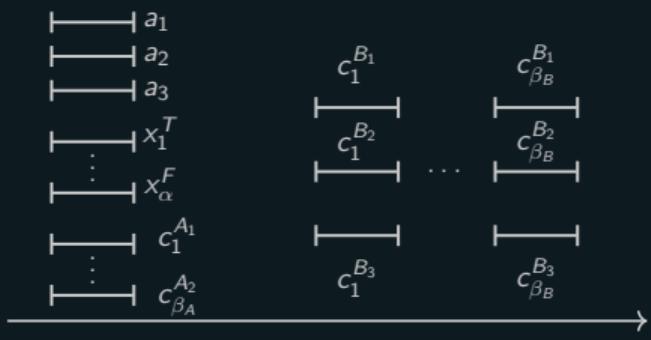
Reduction from $[2 - 3]$ BOUNDED SAT:



Theorem 2

FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard for $k = 1$ and $m = 3$.*

Reduction from $[2 - 3]$ BOUNDED SAT:

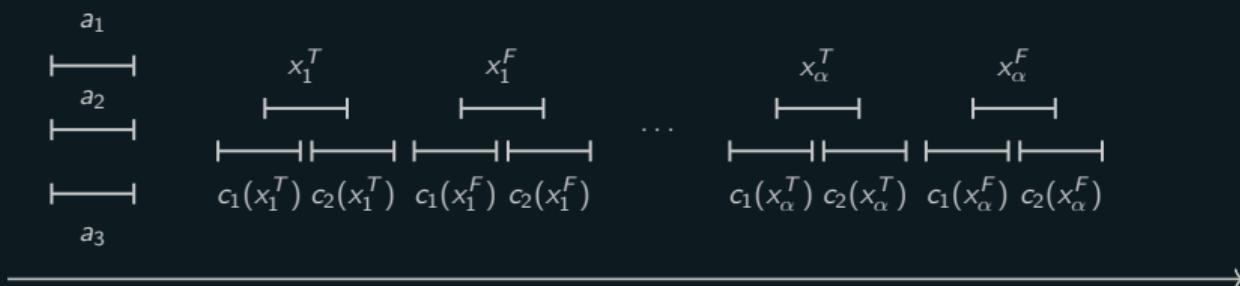


Day 2

Theorem 2

FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard for $k = 1$ and $m = 3$.*

Reduction from [2 – 3] BOUNDED SAT:



Day 3 - The Validation Day

Fairness Parameter

$m = 1$	$(1,1)$						
$m = 2$	$(1,2)$	$(2,2)$					
$m = 3$	$(1,3)$	$(2,3)$	$(3,3)$				
$m = 4$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$			
$m = 5$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$		
$m = 6$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$	
$m = 7$	$(1,7)$	$(2,7)$	$(3,7)$	$(4,7)$	$(5,7)$	$(6,7)$	$(7,7)$
	$k = 1$	$k = 2$	$k = 3$	$k = 4$	$k = 5$	$k = 6$	$k = 7$

Fairness Parameter

$m = 1$	$(1,1)$									
$m = 2$	$(1,2)$	$(2,2)$								
$m = 3$	$(1,3)$	$(2,3)$	$(3,3)$							
$m = 4$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$						
$m = 5$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$					
$m = 6$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$				
$m = 7$	$(1,7)$	$(2,7)$	$(3,7)$	$(4,7)$	$(5,7)$	$(6,7)$	$(7,7)$			
	$k = 1$	$k = 2$	$k = 3$	$k = 4$	$k = 5$	$k = 6$	$k = 7$			

Fairness Parameter

$m = 1$	$(1,1)$						
$m = 2$	$(1,2)$	$(2,2)$					
$m = 3$	$(1,3)$	$(2,3)$	$(3,3)$				
$m = 4$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$			
$m = 5$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$		
$m = 6$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$	
$m = 7$	$(1,7)$	$(2,7)$	$(3,7)$	$(4,7)$	$(5,7)$	$(6,7)$	$(7,7)$
	$k = 1$	$k = 2$	$k = 3$	$k = 4$	$k = 5$	$k = 6$	$k = 7$

Fairness Parameter

$m = 1$	$(1,1)$						
$m = 2$	$(1,2)$	$(2,2)$					
$m = 3$	$(1,3)$	$(2,3)$	$(3,3)$				
$m = 4$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$			
$m = 5$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$		
$m = 6$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$	
$m = 7$	$(1,7)$	$(2,7)$	$(3,7)$	$(4,7)$	$(5,7)$	$(6,7)$	$(7,7)$
	$k = 1$	$k = 2$	$k = 3$	$k = 4$	$k = 5$	$k = 6$	$k = 7$

Fairness Parameter

$m = 1$	$(1,1)$								
$m = 2$	$(1,2)$	$(2,2)$							
$m = 3$	$(1,3)$	$(2,3)$	$(3,3)$						
$m = 4$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$					
$m = 5$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$				
$m = 6$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$			
$m = 7$	$(1,7)$	$(2,7)$	$(3,7)$	$(4,7)$	$(5,7)$	$(6,7)$	$(7,7)$		
	$k = 1$	$k = 2$	$k = 3$	$k = 4$	$k = 5$	$k = 6$	$k = 7$		

Theorem 3

FAIR REPETITIVE INTERVAL SCHEDULING *is polynomial-time solvable for $k = m - 1$.*

Theorem 3

FAIR REPETITIVE INTERVAL SCHEDULING *is polynomial-time solvable for $k = m - 1$.*

Reduction to 2SAT:

Theorem 3

FAIR REPETITIVE INTERVAL SCHEDULING *is polynomial-time solvable for $k = m - 1$.*

Reduction to 2SAT:

- For every client j and day i we create $x_{i,j}$.

Theorem 3

FAIR REPETITIVE INTERVAL SCHEDULING *is polynomial-time solvable for $k = m - 1$.*

Reduction to 2SAT:

- For every client j and day i we create $x_{i,j}$.
- We create the conflict clause $(\neg x_{i,j_1} \vee \neg x_{i,j_2})$ if clients j_1 and j_2 are in conflict on day i .

Theorem 3

FAIR REPETITIVE INTERVAL SCHEDULING *is polynomial-time solvable for $k = m - 1$.*

Reduction to 2SAT:

- For every client j and day i we create $x_{i,j}$.
- We create the conflict clause $(\neg x_{i,j_1}, \vee \neg x_{i,j_2})$ if clients j_1 and j_2 are in conflict on day i .
- We create $\mathcal{O}(m^2)$ validation clause for every client $(x_{i_1,j}, \vee x_{i_2,j})$ for $1 \leq i_1 < i_2 \leq m$.

Fairness Parameter

$m = 1$	$(1,1)$						
$m = 2$	$(1,2)$	$(2,2)$					
$m = 3$	$(1,3)$	$(2,3)$	$(3,3)$				
$m = 4$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$			
$m = 5$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$		
$m = 6$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$	
$m = 7$	$(1,7)$	$(2,7)$	$(3,7)$	$(4,7)$	$(5,7)$	$(6,7)$	$(7,7)$
	$k = 1$	$k = 2$	$k = 3$	$k = 4$	$k = 5$	$k = 6$	$k = 7$

Fairness Parameter

$m = 1$	$(1,1)$							
$m = 2$	$(1,2)$	$(2,2)$						
$m = 3$	$(1,3)$	$(2,3)$	$(3,3)$					
$m = 4$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$				
$m = 5$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$			
$m = 6$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$		
$m = 7$	$(1,7)$	$(2,7)$	$(3,7)$	$(4,7)$	$(5,7)$	$(6,7)$	$(7,7)$	
	$k = 1$	$k = 2$	$k = 3$	$k = 4$	$k = 5$	$k = 6$	$k = 7$	

Theorem 4

FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard also when $d_{i,j} = d_j$.*

It is polynomial-time solvable when either of the following additionally holds:

- *The number of days m is constant.*
- *The processing times are day-independent $p_{i,j} = p_j$.*

Theorem 5

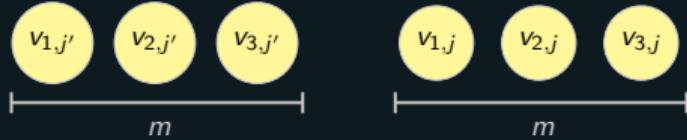
FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard also when $p_{i,j} = 2$.*

It is polynomial-time solvable when $p_j = 1$

Theorem 5

FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard also when $p_{i,j} = 2$.*

It is polynomial-time solvable when $p_j = 1$



Theorem 5

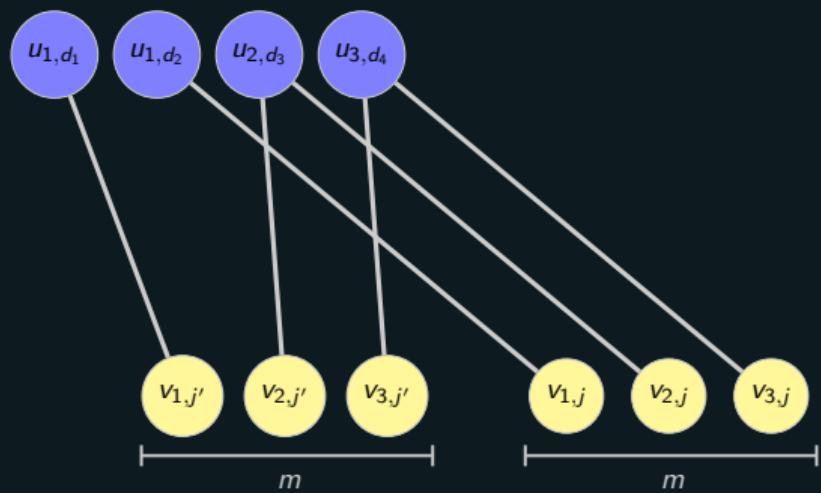
FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard also when $p_{i,j} = 2$.*

It is polynomial-time solvable when $p_j = 1$

Theorem 5

FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard also when $p_{i,j} = 2$.*

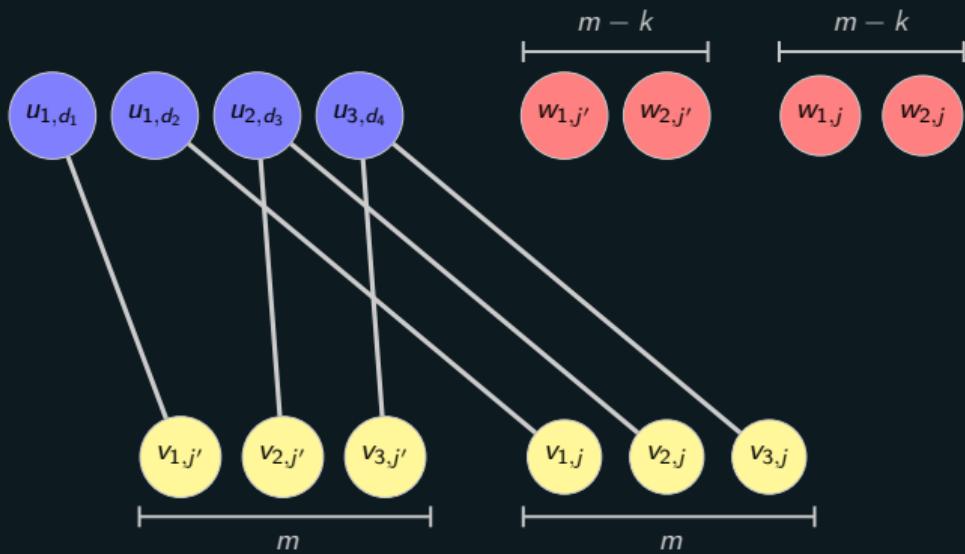
It is polynomial-time solvable when $p_j = 1$



Theorem 5

FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard also when $p_{i,j} = 2$.*

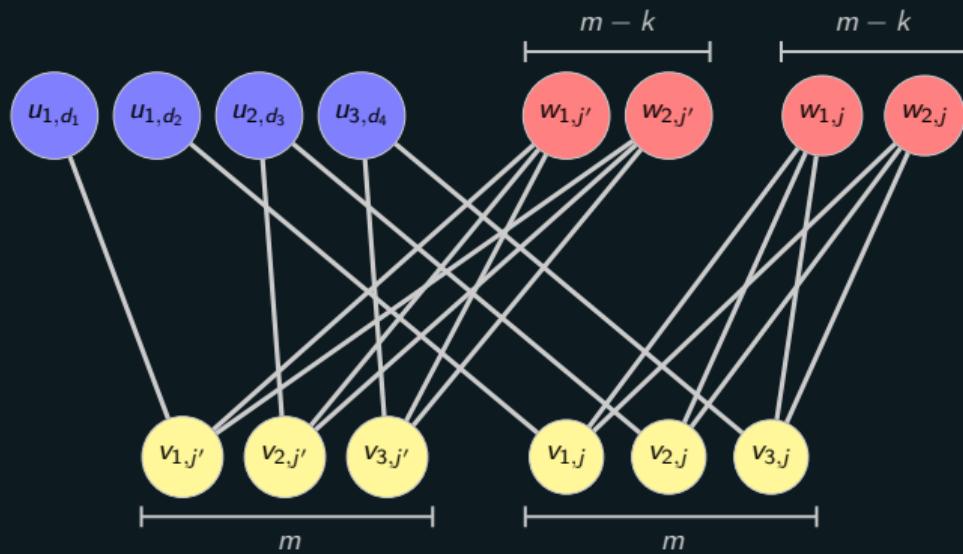
It is polynomial-time solvable when $p_j = 1$



Theorem 5

FAIR REPETITIVE INTERVAL SCHEDULING *is NP-hard also when $p_{i,j} = 2$.*

It is polynomial-time solvable when $p_j = 1$



Theorem 6

FAIR REPETITIVE INTERVAL SCHEDULING *is*:

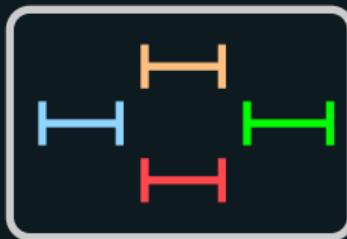
- *NP-hard for a constant number of days m .*
- *NP-hard for a constant treewidth τ .*
- *FPT with respect to $m + \tau$.*

The Conflict Graph

Day 1

Day 2

Day 3

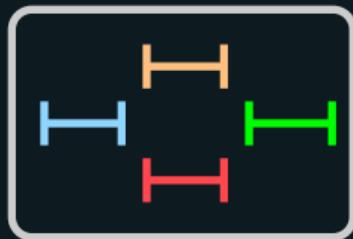
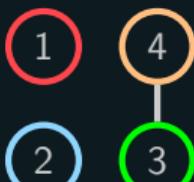


The Conflict Graph

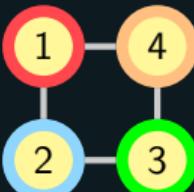
Day 1

Day 2

Day 3



The Overall Conflict Graph



Discussion

Discussion

Fairness is hard.

Fairness is hard.

Interesting generalizations:

Fairness is hard.

Interesting generalizations:

- Clients have different fairness-parameter.

Fairness is hard.

Interesting generalizations:

- Clients have different fairness-parameter.
- Multiple jobs per client.

Fairness is hard.

Interesting generalizations:

- Clients have different fairness-parameter.
- Multiple jobs per client.
- Multiple machines per day.

References

[HMN⁺25] Danny Hermelin, Hendrik Molter, Rolf Niedermeier, Michael Pinedo, and Dvir Shabtay. Fairness in repetitive scheduling. *European Journal of Operational Research*, 323(3):724–738, 2025.