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JIT Scheduling

• In Just in Time scheduling jobs are completed

exactly on their deadlines.

• Equivalently, every job has a predetermined interval.

• Jobs intervals intersect are in conflict.

• The conflict-graph is an interval graph.
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Interval Scheduling Problems

Interval Scheduling on Identical Machines

Input: m machines and n jobs, each job has

• a processing time pj ,

• a weight wj ,

• a deadline dj

Output: Maximum weighted JIT schedule.

This problem is solvable in polynomial time!
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Problem Definition

Interval Scheduling on Identical Machines

Input: m machines and n jobs, each with:

• processing time pj

• weight wj

• deadline dj

Output: Maximum weighted JIT schedule.
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Problem Definition

Interval Scheduling on Unrelated Machines

Input: m machines and n jobs, each with:

• processing time pi,j

• weight wj

• deadline dj

Output: Maximum weighted JIT schedule.
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Problem Definition

Interval Scheduling on Eligible Machines

Input: m machines and n jobs, each with:

• processing time pj

• weight wj

• deadline dj

• eligible machine set Mj ⊆ [m]

Output: Maximum weighted JIT schedule.
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Related Work

• The problem is strongly NP-hard.

[AS87] - No (Wn)O(1) algorithm.

• Mnich and van Bevern have asked in

2018 whether the problem is

fixed-parameter tractable [MvB18].

• Interval Scheduling on

Eligible Machines is solvable in

O(nm) [AS87].

• Unrelated Machines Interval

Scheduling is solvable in O(mnm)

[SV05].
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Obtained Results

Is Unrelated Machines Interval Scheduling fixed-parameter tractable (FPT)?

Is there f (k) · nO(1) time algorithm for some parameter k?

Our research has produced the following findings:

• For k := m no such algorithm exist

• For k := pmax no such algorithm exist

• Interval Scheduling on Eligible Machines is FPT w.r.t. pmax +m

Included in the 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)

Published in Journal of Computer and System Sciences (JCSS-D-23-00304)
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Eligible Machines Interval Scheduling is W[1]-hard w.r.t. m

Theorem 1

Eligible Machines Interval Scheduling is strongly W[1]-hard when parameterized by m,

the number of machines.

• Parameterized reduction from Multicolored k-Clique

• Reduce such that m ≤ f (k)

• Key ideas:

• Map all colorful edges and vertices to jobs

• Schedule maximum vertices and edges jobs

• Prevent the simultaneous schedule of non-adjacent vertices
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Eligible Machines Interval Scheduling is W[1]-hard w.r.t. m

Gadget 1 - Vertex Selection Machine

. . .. . .

j
(ℓ)
u

j
(1)
u
. . .

j
(ℓ′)
u
. . .

j
(k)
u

j
(ℓ)
v

j
(1)
v
. . .

j
(ℓ′)
v
. . .

j
(k)
v

j
(ℓ)
z

j
(1)
z
. . .

j
(ℓ′)
z
. . .

j
(k)
z

Figure 1: Illustration of the validation machine. Depicted are intervals of jobs corresponding to vertices

v , u, z ∈ Vℓ with v <π u <π z .
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Eligible Machines Interval Scheduling is W[1]-hard w.r.t. m

Gadget 2 - Edge Selection Machine
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Figure 2: An illustration of the edge selection machine for color combination ℓ, ℓ′ with ℓ < ℓ′. Depicted

are intervals of jobs relating to u ∈ Vℓ, v ∈ Vℓ′ , and e = {u, v} ∈ E . Gray intervals correspond to jobs

that are not eligible on the machine.
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Eligible Machines Interval Scheduling is W[1]-hard w.r.t. pmax

Theorem 2

Eligible Machines Interval Scheduling is NP-hard even for pmax = O(1).

• Reduction from Exact (3,4)-SAT

• Key ideas:

• Map all variables and literals to jobs

• Schedule for every clause exactly one literal job

• Scheduling literal jobs requires consistent variable jobs schedule

• Jobs’ processing times are bounded by a constant
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Eligible Machines Interval Scheduling is W[1]-hard w.r.t. pmax
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Figure 3: An illustration of the reduction when applied to the clause c = (x ∨ y ∨ ¬z). The eligible

machines of j
(1)
c are {iTx , i2c , i

3
c }, for j

(2)
c these are {iTy , i2c , i

3
c }, and for j

(2)
c the eligible machines are

{iFz , i2c , i3c } (as z appears negated in c). 10



Eligible Machines Interval Scheduling is FPT w.r.t. pmax +m

Theorem 3

Eligible Machines Interval Scheduling is FPT with respect to the combined parameter

pmax +m, the longest processing time of a job and the number of machines.

• Removal of jobs such that bounded number of jobs per time-step by f (pmax,m)

• Dynamic program over the time-steps

• Key ideas:

• At any time, at most m jobs can be processed

• Some jobs are superior to others
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Discussion

For m there exists no FPT algorithm for Interval Scheduling on Eligible Machines.

• Does there exists FPT algorithm when uniform weights?

• Does there exists FPT algorithm when uniform processing times?
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