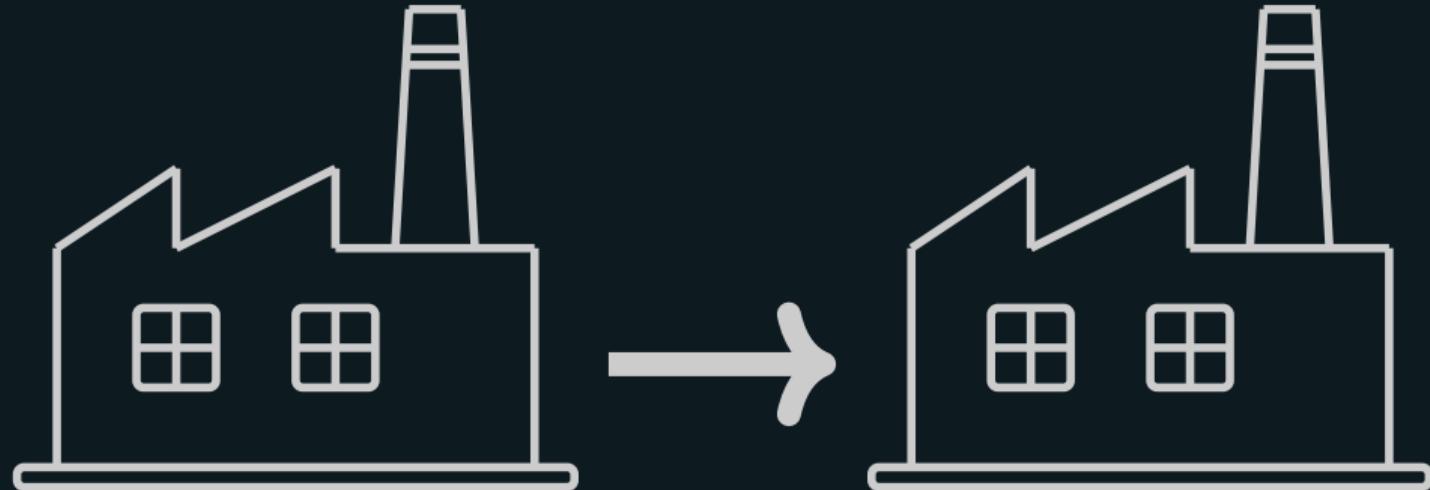


Just-in-Time Scheduling in Two Stage Flexible Flow Shop

Klaus Heeger, Danny Hermelin, Yuval Itzhaki, Baruch Schieber, Dvir Shabtay

Flow Shop



Parts-Plant

Assembly-Plant

Problem Definition

Two-Stage Flow Shop Interval Scheduling

$$F2 \parallel \sum w_j Z_j$$

Input:

Problem Definition

Two-Stage Flow Shop Interval Scheduling

$$F2 \parallel \sum w_j Z_j$$

Input: A set of n jobs,

Problem Definition

Two-Stage Flow Shop Interval Scheduling

$$F2 \parallel \sum w_j Z_j$$

Input: A set of n jobs, each job j has:

Problem Definition

Two-Stage Flow Shop Interval Scheduling

$$F2 \parallel \sum w_j Z_j$$

Input: A set of n jobs, each job j has:

- *due date* d_j



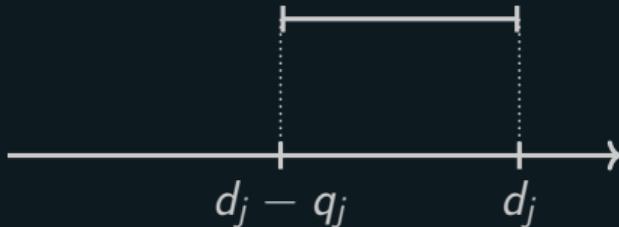
Problem Definition

Two-Stage Flow Shop Interval Scheduling

$$F2 \parallel \sum w_j Z_j$$

Input: A set of n jobs, each job j has:

- *due date* d_j ;
- *processing time* q_j



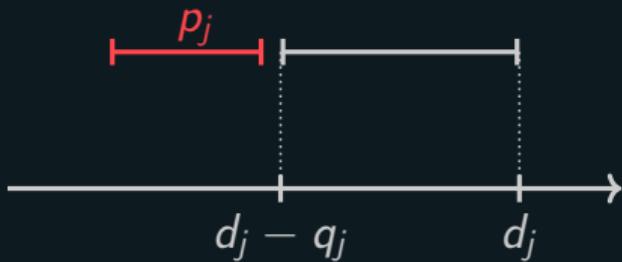
Problem Definition

Two-Stage Flow Shop Interval Scheduling

$$F2 \parallel \sum w_j Z_j$$

Input: A set of n jobs, each job j has:

- *due date* d_j ;
- *processing time* q_j
- *preprocessing time* p_j



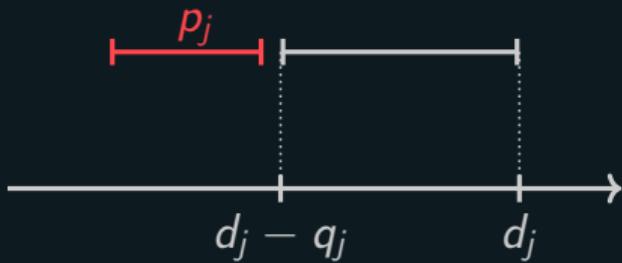
Problem Definition

Two-Stage Flow Shop Interval Scheduling

$$F2 \parallel \sum w_j Z_j$$

Input: A set of n jobs, each job j has:

- *due date* d_j
- *processing time* q_j
- *preprocessing time* p_j
- *weight* w_j



Problem Definition

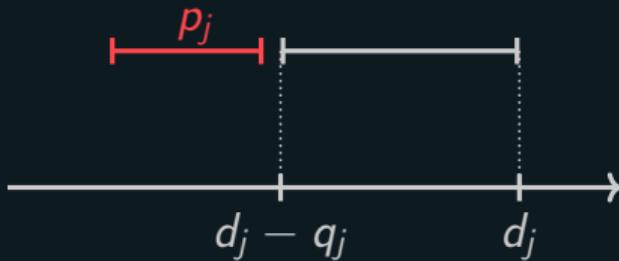
Two-Stage Flow Shop Interval Scheduling

$$F2 \parallel \sum w_j Z_j$$

Input: A set of n jobs, each job j has:

- *due date* d_j
- *processing time* q_j
- *preprocessing time* p_j
- *weight* w_j

For the preprocessing we have 1 machine, for the processing we have 1 machine.



Problem Definition

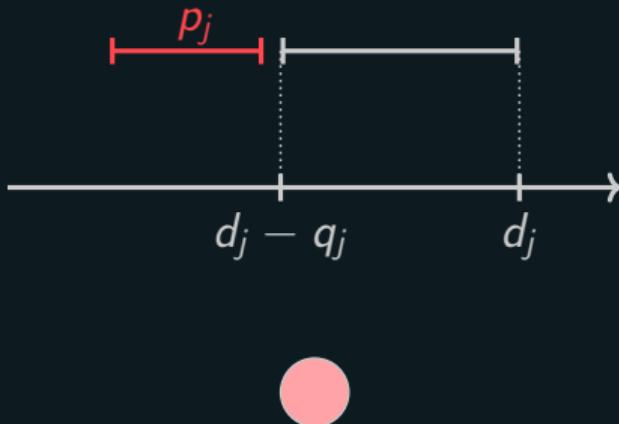
Two-Stage Flow Shop Interval Scheduling

$$F2 \parallel \sum w_j Z_j$$

Input: A set of n jobs, each job j has:

- *due date* d_j ;
- *processing time* q_j
- *preprocessing time* p_j
- *weight* w_j

For the preprocessing we have 1 machine, for the processing we have 1 machine.



Problem Definition

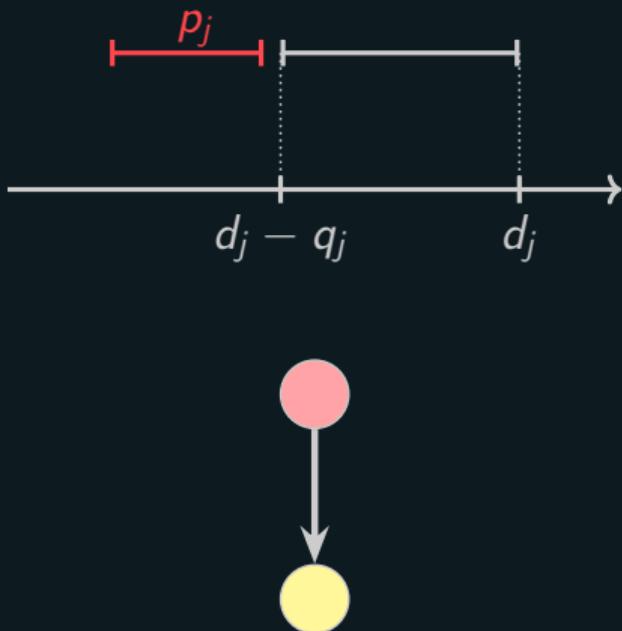
Two-Stage Flow Shop Interval Scheduling

$$F2 \parallel \sum w_j Z_j$$

Input: A set of n jobs, each job j has:

- *due date* d_j ;
- *processing time* q_j
- *preprocessing time* p_j
- *weight* w_j

For the preprocessing we have 1 machine, for the processing we have 1 machine.



Problem Definition

Two-Stage Flow Shop Interval Scheduling

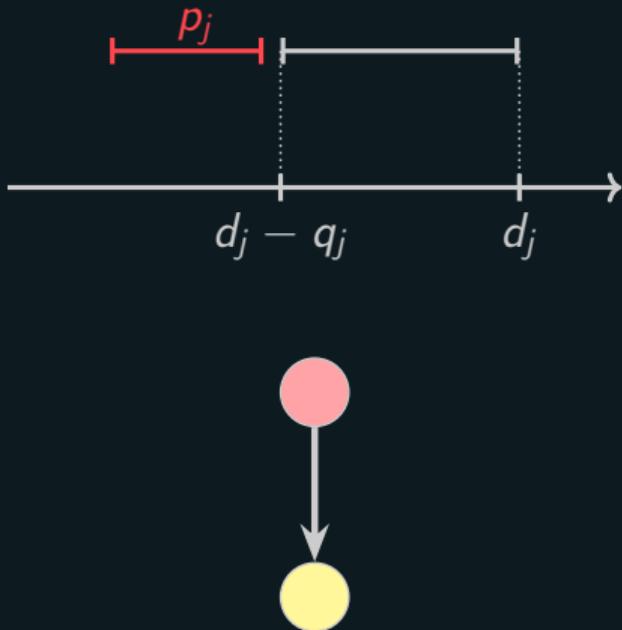
$$F2 \parallel \sum w_j Z_j$$

Input: A set of n jobs, each job j has:

- *due date* d_j ;
- *processing time* q_j
- *preprocessing time* p_j
- *weight* w_j

For the preprocessing we have 1 machine, for the processing we have 1 machine.

Output: Maximum weighted JIT schedule.



Problem Definition

Two-Stage **Flexible Flow Shop Interval Scheduling**

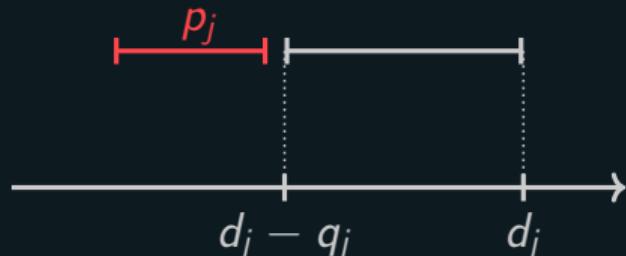
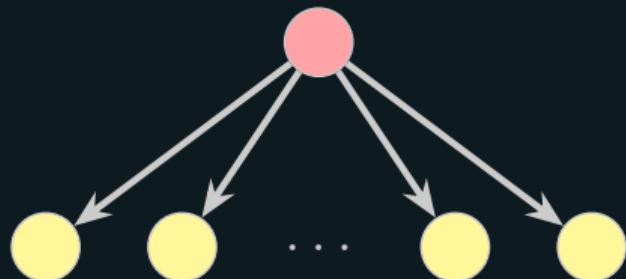
$$F(1, m) \parallel \sum w_j Z_j$$

Input: A set of n jobs, each job j has:

- *due date* d_j
- *processing time* q_j
- *preprocessing time* p_j
- *weight* w_j

For the preprocessing we have **1 machine**, for the processing we have **m identical machines**.

Output: Maximum weighted JIT schedule.



Related Work

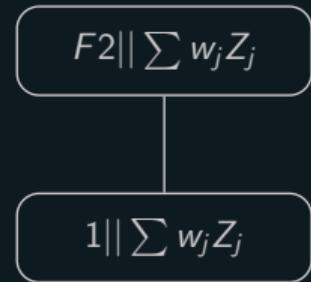
Related Work

JIT Flow Shop

$$1 \parallel \sum w_j Z_j$$

Related Work

JIT Flow Shop



Related Work

JIT Flow Shop

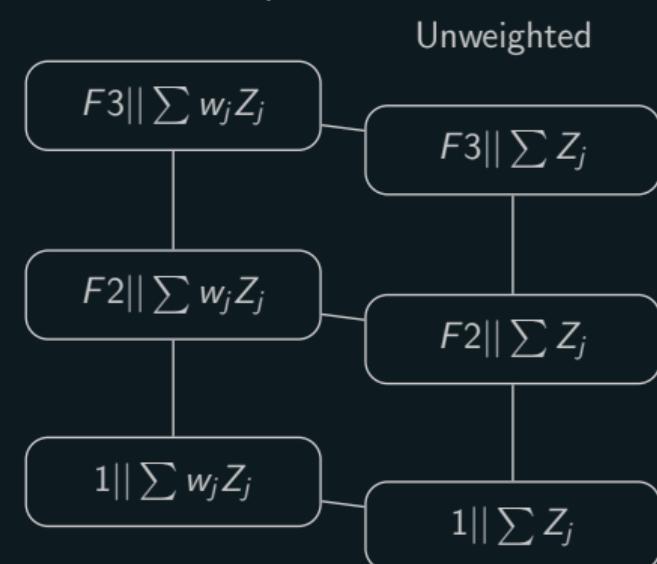
Related Work

Interval Scheduling

Two-Stage ~~Flexible~~ JIT Flow Shop

Three-Stage ~~Flexible~~ JIT Flow Shop

JIT Flow Shop



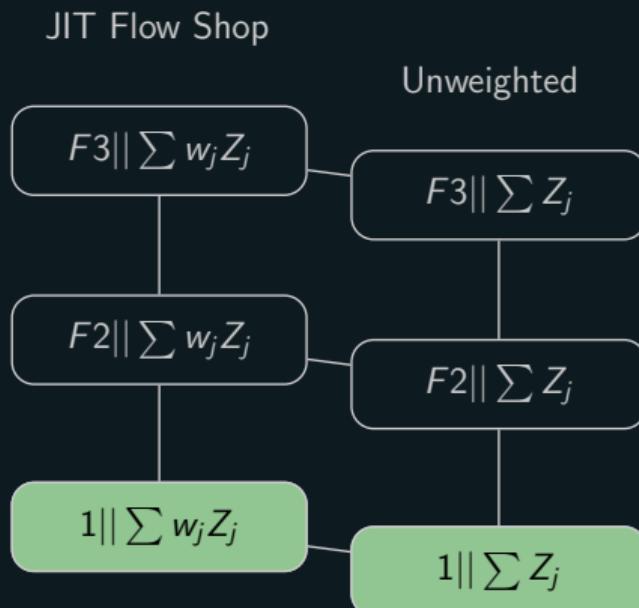
Related Work

Interval Scheduling

- $O(n \log n)$ time solvable single machine [Gol88].

Two-Stage ~~Flexible~~ JIT Flow Shop

Three-Stage ~~Flexible~~ JIT Flow Shop



Related Work

Interval Scheduling

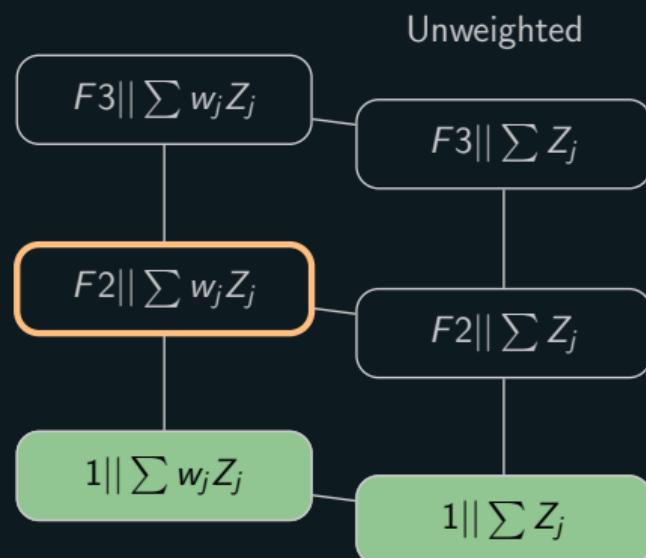
- $O(n \log n)$ time solvable single machine [Gol88].

Two-Stage Flexible JIT Flow Shop

- **NP-hard** even when $q_j = 1$ ($m = 1$) [CY07]

Three-Stage Flexible JIT Flow Shop

JIT Flow Shop



Related Work

Interval Scheduling

- $O(n \log n)$ time solvable single machine [Gol88].

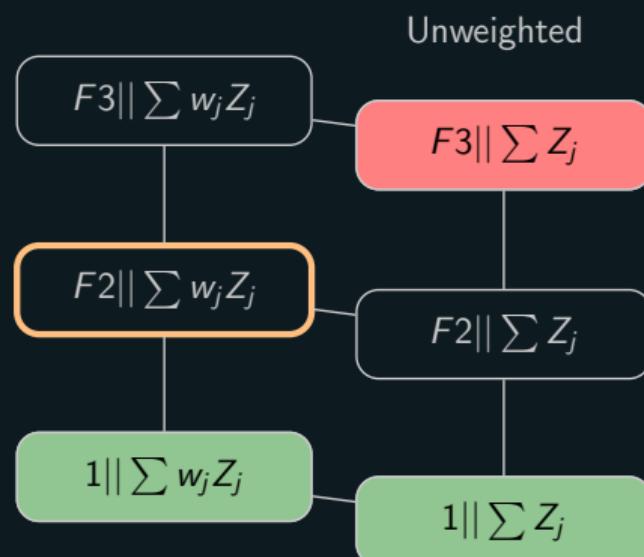
Two-Stage Flexible JIT Flow Shop

- **NP-hard** even when $q_j = 1$ ($m = 1$) [CY07]

Three-Stage Flexible JIT Flow Shop

- **Strongly NP-hard** even when $w_j = 1$ [CY07].

JIT Flow Shop



Related Work

Interval Scheduling

- $O(n \log n)$ time solvable single machine [Gol88].

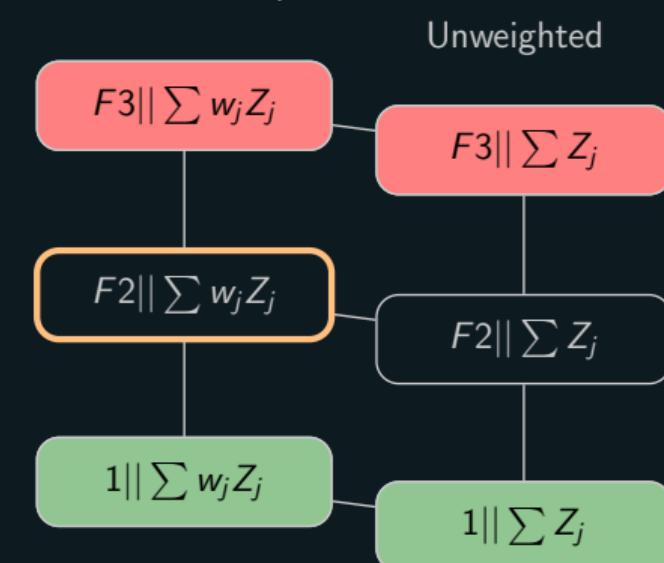
Two-Stage Flexible JIT Flow Shop

- **NP-hard** even when $q_j = 1$ ($m = 1$) [CY07]

Three-Stage Flexible JIT Flow Shop

- **Strongly NP-hard** even when $w_j = 1$ [CY07].

JIT Flow Shop



Related Work

Interval Scheduling

- $O(n \log n)$ time solvable single machine [Gol88].

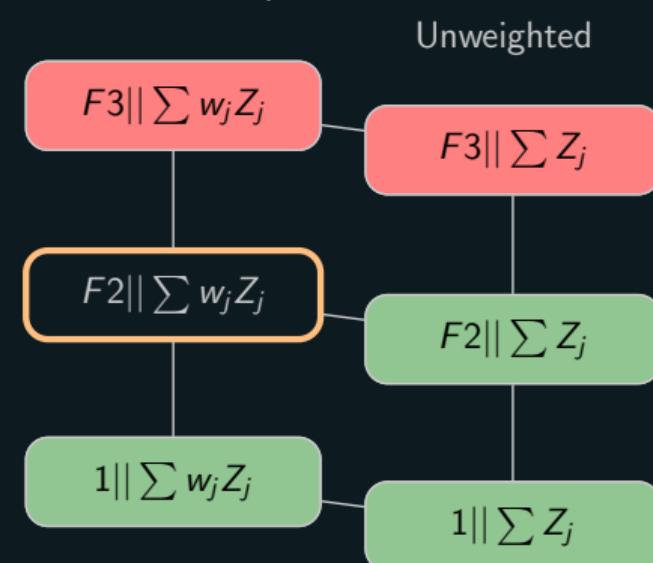
Two-Stage Flexible JIT Flow Shop

- **NP-hard** even when $q_j = 1$ ($m = 1$) [CY07]
- When $w_j = 1$ $O(n^4)$ time solvable [CY07].

Three-Stage Flexible JIT Flow Shop

- **Strongly NP-hard** even when $w_j = 1$ [CY07].

JIT Flow Shop



Related Work

Interval Scheduling

- $O(n \log n)$ time solvable single machine [Gol88].

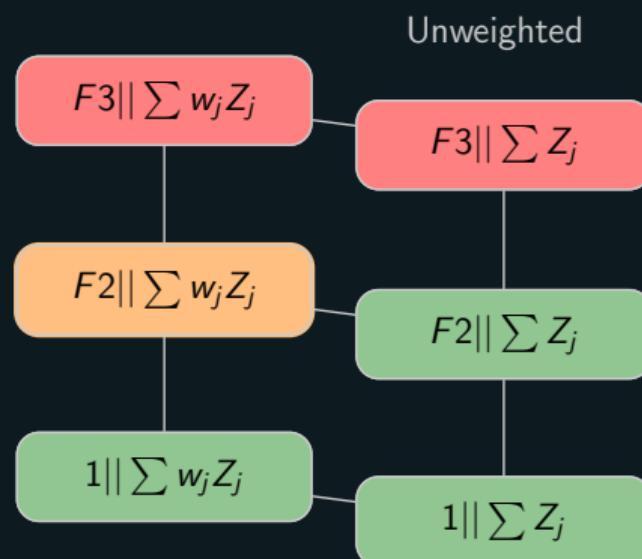
Two-Stage Flexible JIT Flow Shop

- **NP-hard** even when $q_j = 1$ ($m = 1$) [CY07]
- When $w_j = 1$ $O(n^4)$ time solvable [CY07].
- **Pseudo-polynomial time solvable** [SB12].
- When $w_j = 1$ $O(n^3)$ time solvable [SB12].

Three-Stage Flexible JIT Flow Shop

- **Strongly NP-hard** even when $w_j = 1$ [CY07].

JIT Flow Shop



Related Work

Interval Scheduling

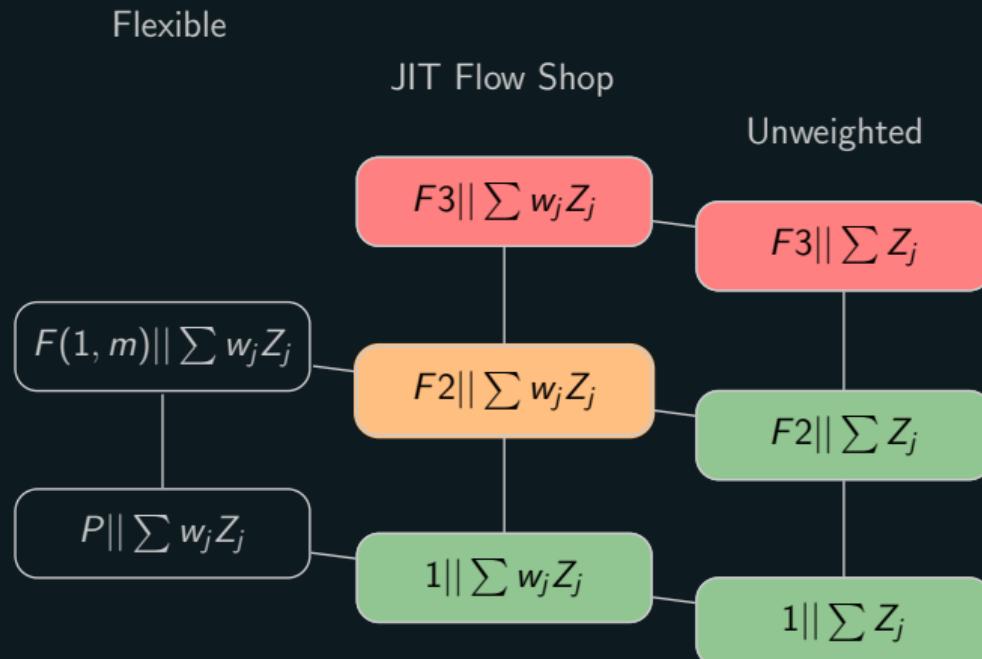
- $O(n \log n)$ time solvable single machine [Gol88].

Two-Stage ~~Flexible~~ JIT Flow Shop

- **NP-hard** even when $q_j = 1$ ($m = 1$) [CY07].
- When $w_j = 1$ $O(n^4)$ time solvable [CY07].
- **Pseudo-polynomial time solvable** [SB12].
- When $w_j = 1$ $O(n^3)$ time solvable [SB12].

Three-Stage ~~Flexible~~ JIT Flow Shop

- Strongly NP-hard even when $w_i = 1$ [CY07].



Related Work

Interval Scheduling

- $O(n \log n)$ time solvable single machine [Gol88].
- $O(n^2 \log n)$ time solvable multiple machines [AS87].

Two-Stage Flexible JIT Flow Shop

- **NP-hard** even when $q_j = 1$ ($m = 1$) [CY07]
- When $w_j = 1$ $O(n^4)$ time solvable [CY07].
- **Pseudo-polynomial time solvable** [SB12].
- When $w_j = 1$ $O(n^3)$ time solvable [SB12].

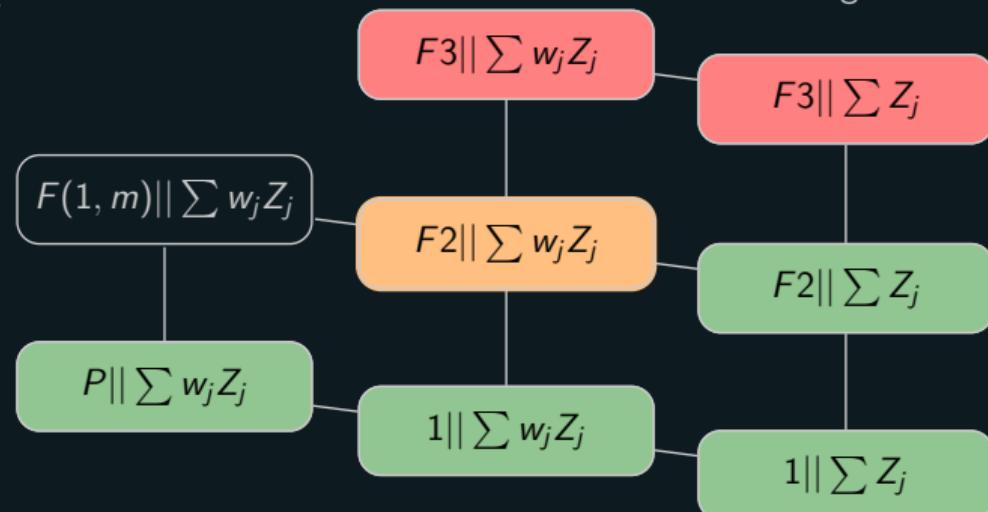
Three-Stage Flexible JIT Flow Shop

- **Strongly NP-hard** even when $w_j = 1$ [CY07].

Flexible

JIT Flow Shop

Unweighted



Related Work

Interval Scheduling

- $O(n \log n)$ time solvable single machine [Gol88].
- $O(n^2 \log n)$ time solvable multiple machines [AS87].

Two-Stage Flexible JIT Flow Shop

- **NP-hard** even when $q_j = 1$ ($m = 1$) [CY07]
- When $w_j = 1$ $O(n^4)$ time solvable [CY07].
- **Pseudo-polynomial time solvable** [SB12].
- When $w_j = 1$ $O(n^3)$ time solvable [SB12].

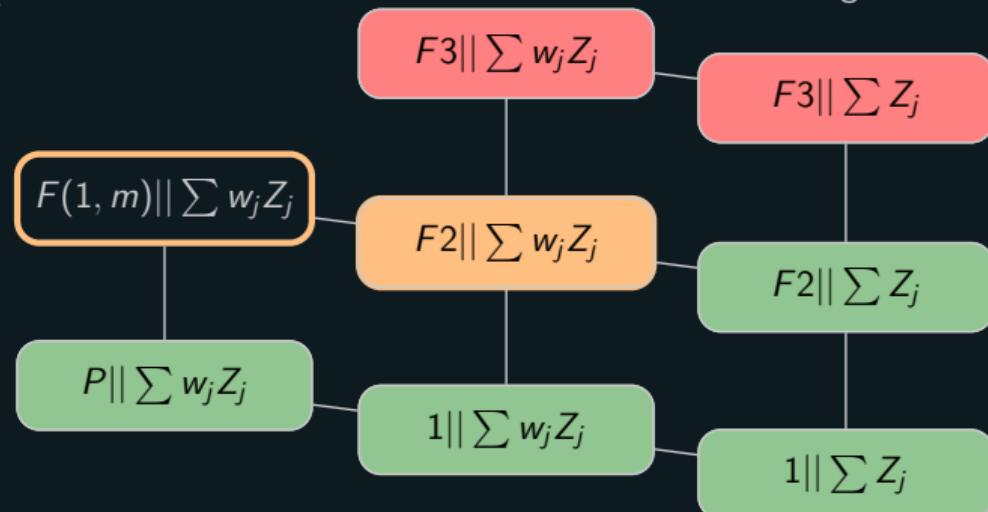
Three-Stage Flexible JIT Flow Shop

- **Strongly NP-hard** even when $w_j = 1$ [CY07].

Flexible

JIT Flow Shop

Unweighted



Key Observations

Observation 1



Key Observations

Observation 1

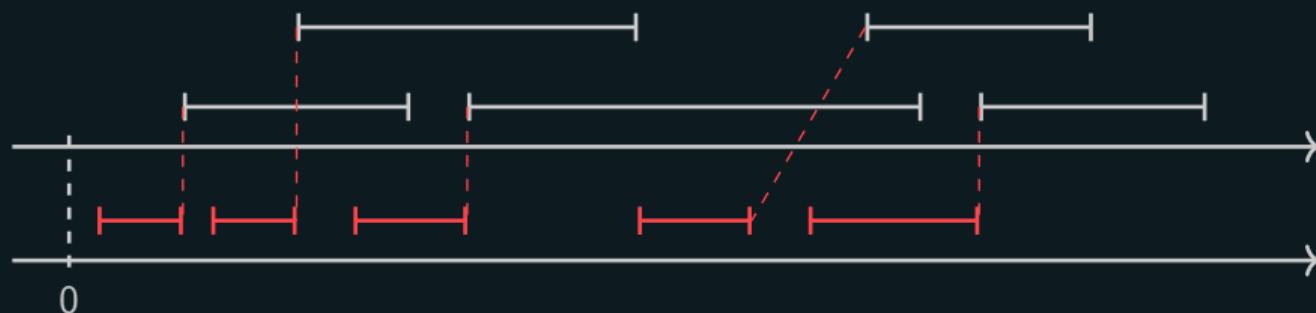
Key Observations

Observation 1

Key Observations

Observation 1

The jobs can be preprocessed in ascending order of start times of the second stage.



Key Observations

Observation 1

The jobs can be preprocessed in ascending order of start times of the second stage.

Observation 2

Optimally, the first stage machine has no idle time.



Hardness

HITTING SET:

Input: A family \mathcal{F} of m subsets of a universe $U = \{1, \dots, n\}$, and an integer k .

Question: Is there a set $H \subseteq U$ with $|H| = k$ and $|H \cap F| \geq 1$ for every $F \in \mathcal{F}$?

$$U = \{1, 2, 3\} , \mathcal{F} = \{F_1 = \{2, 3\}, F_2 = \{1, 2\}, F_3 = \{1, 3\}\} , k = 2$$

Hardness

$$U = \{1, 2, 3\} , \mathcal{F} = \{F_1 = \{2, 3\}, F_2 = \{1, 2\}, F_3 = \{1, 3\}\} , k = 2$$

Dynamic Program

Observation 3

$$T[\vec{s}, W'] = \max \begin{cases} T[X_1, W'], \\ \min \begin{cases} T[X_2, W' - w_j] - p_j, \\ s_j - p_j. \end{cases} \end{cases}$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

$$T[\vec{s}, W'] = \max \left\{ \begin{array}{l} T[X_1, W'], \\ \min \left\{ \begin{array}{l} T[X_2, W' - w_j] - p_j, \\ s_j - p_j. \end{array} \right\} \end{array} \right\}$$

Dynamic Program

Observation 3

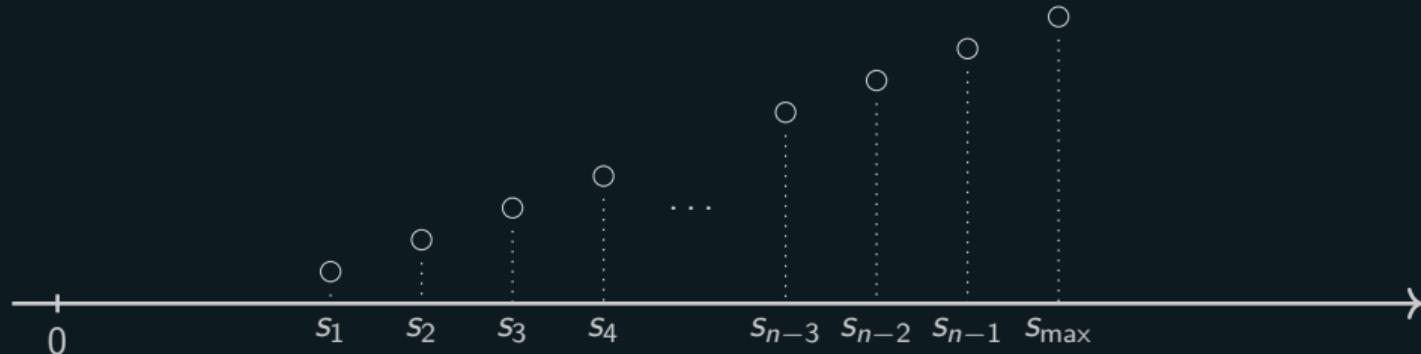
Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

$$T[\vec{s}, W'] = \max \left\{ \begin{array}{l} T[X_1, W'], \\ \min \left\{ \begin{array}{l} T[X_2, W' - w_j] - p_j, \\ s_j - p_j. \end{array} \right\} \end{array} \right\}$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

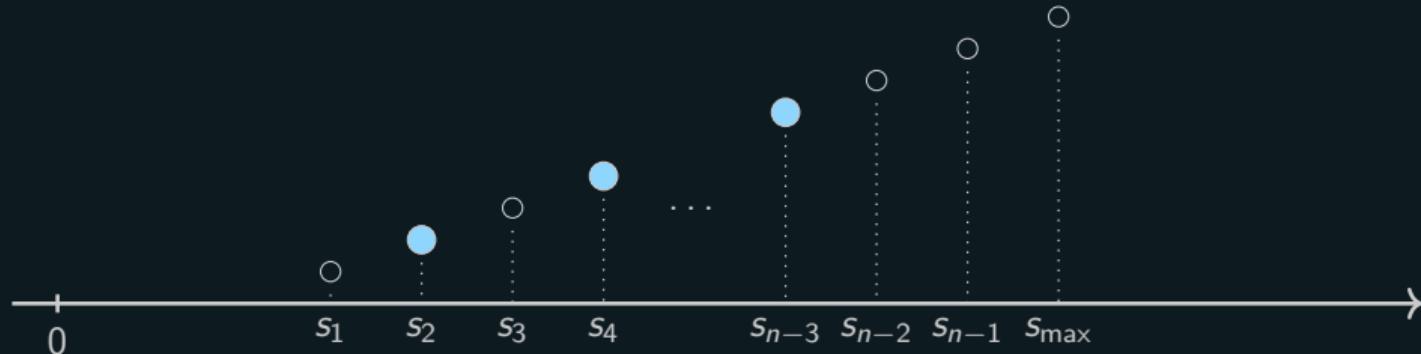


$$T[\vec{s}, W'] = \max \left\{ \min \left\{ \begin{array}{l} T[X_1, W'], \\ T[X_2, W' - w_j] - p_j, \\ s_j - p_j. \end{array} \right\} \right\}$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

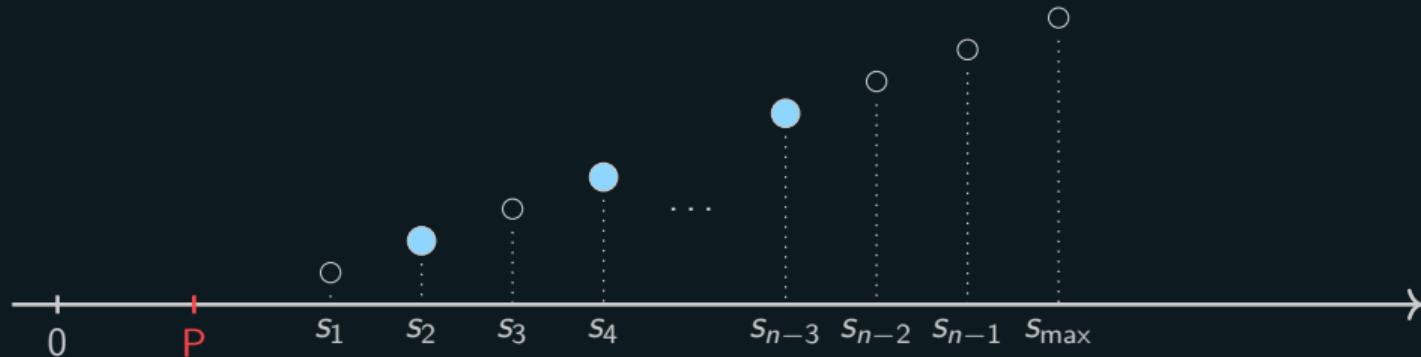


$$T[\vec{s}, W'] = \max \left\{ \min \left\{ \begin{array}{l} T[X_1, W'], \\ T[X_2, W' - w_j] - p_j, \\ s_j - p_j. \end{array} \right\} \right\}$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

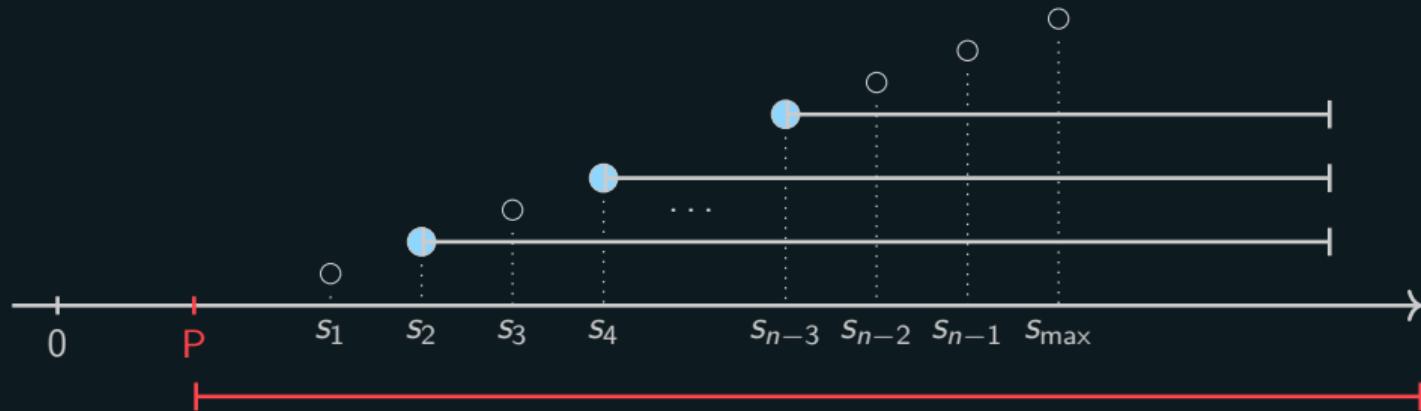


$$T[\vec{s}, W'] = \max \left\{ \min \left\{ \begin{array}{l} T[X_1, W'], \\ T[X_2, W' - w_j] - p_j, \\ s_j - p_j. \end{array} \right\} \right\}$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

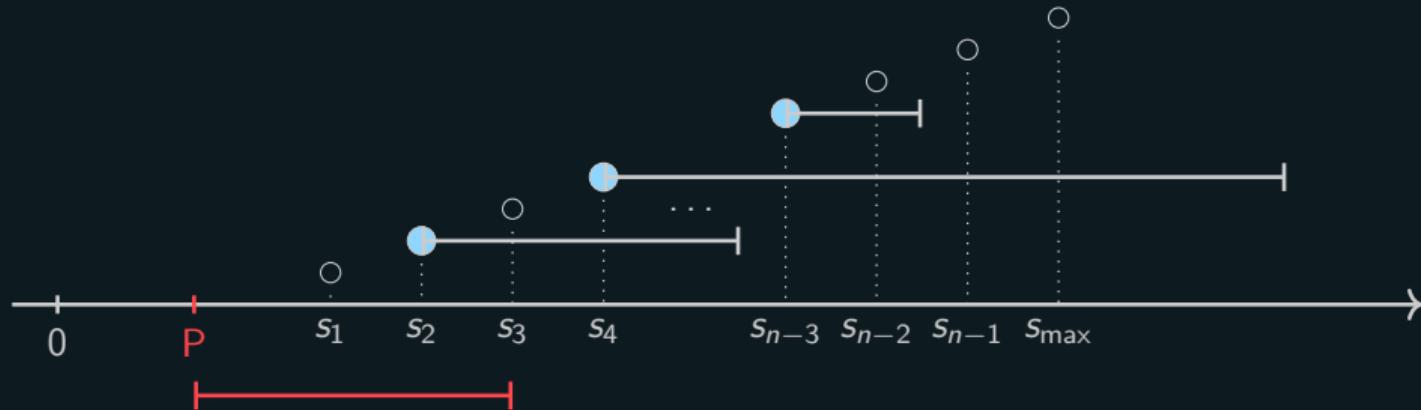


$$T[\vec{s}, W'] = \max \left\{ \min \left\{ T[X_2, W' - w_j] - p_j, s_j - p_j \right\} \right\}$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

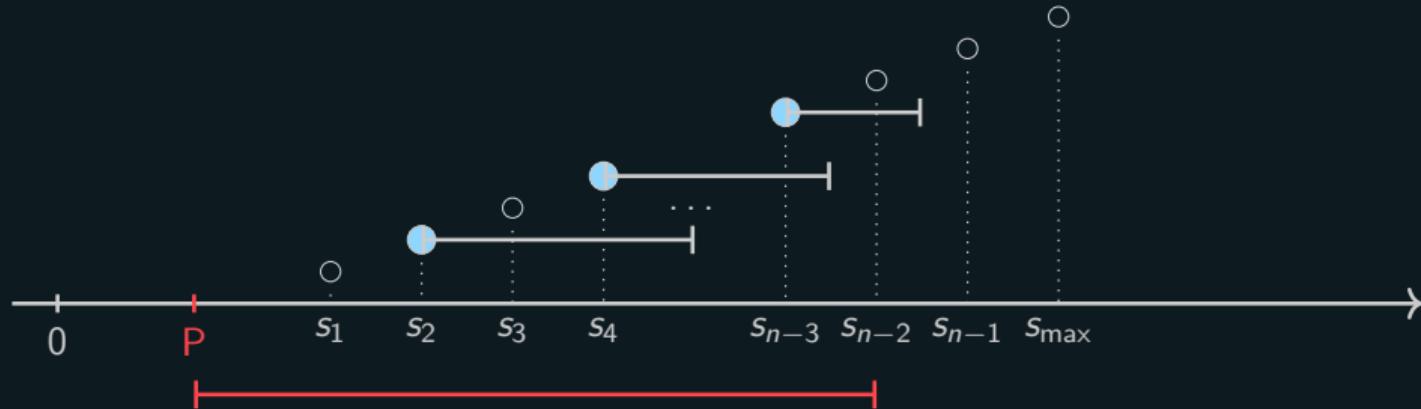


$$T[\vec{s}, W'] = \max \left\{ \min \left\{ T[X_2, W' - w_j] - p_j, s_j - p_j \right\} \right\}$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

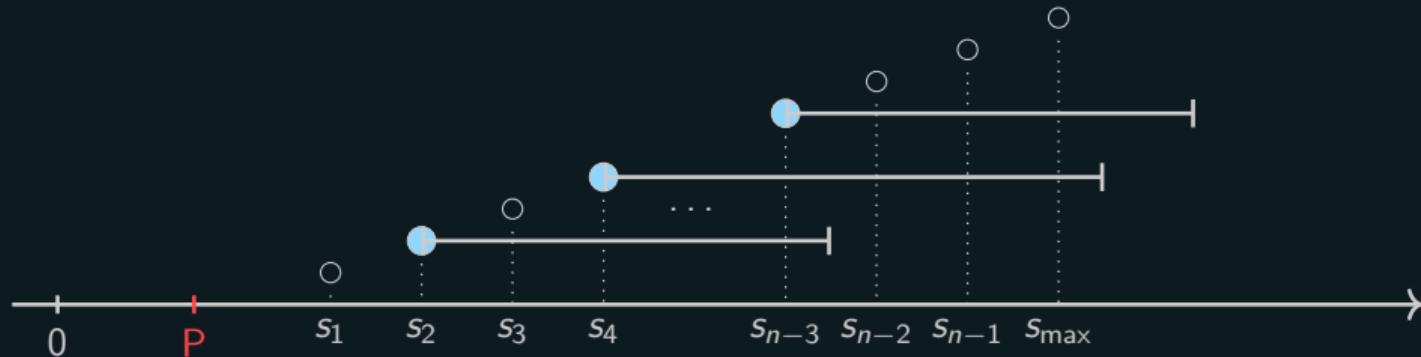


$$T[\vec{s}, W'] = \max \left\{ \min \left\{ T[X_2, W' - w_j] - p_j, s_j - p_j \right\} \right\},$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

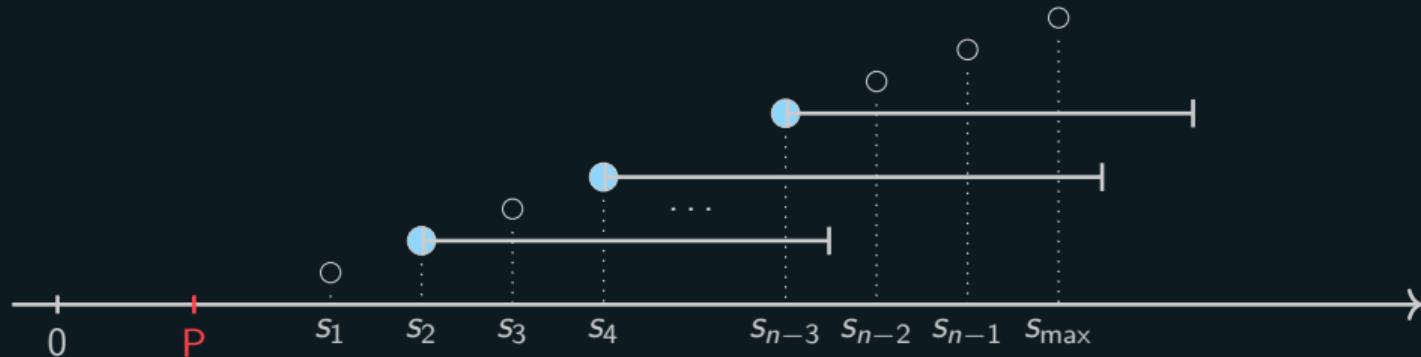


$$T[\vec{s}, W'] = \max \left\{ \min \left\{ \begin{array}{l} T[X_1, W'], \\ T[X_2, W' - w_j] - p_j, \\ s_j - p_j. \end{array} \right\} \right\}$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

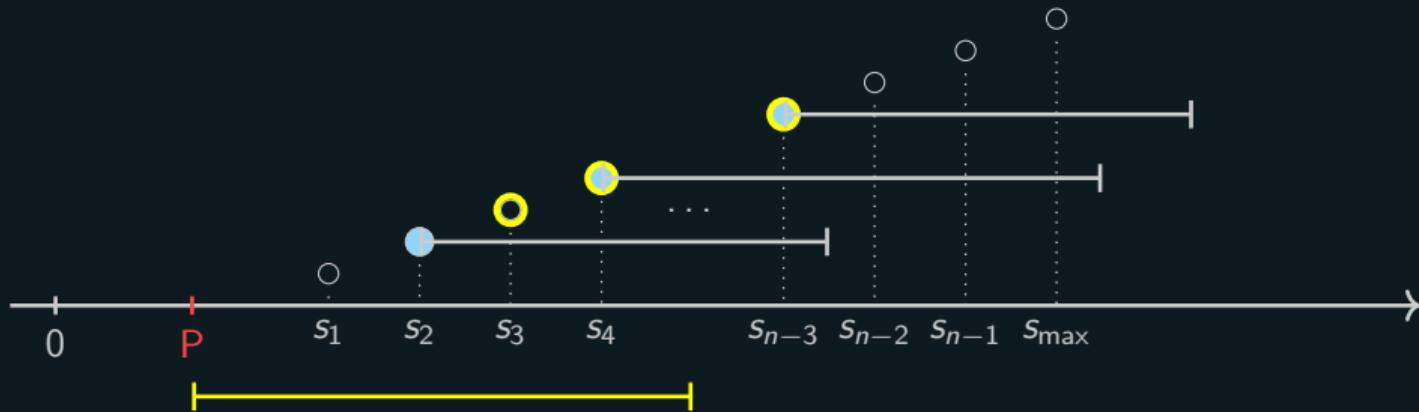


$$T[\vec{s}, W'] = \max \left\{ \min \left\{ \begin{array}{l} T[X_1, W'], \\ T[X_2, W' - w_j] - p_j, \\ s_j - p_j. \end{array} \right\} \right\}$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

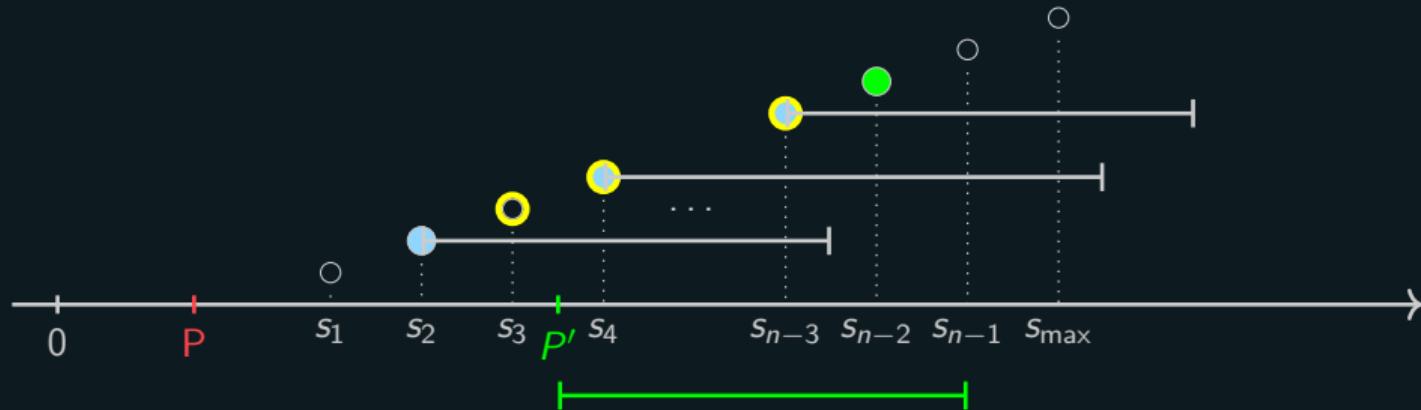


$$T[\vec{s}, W'] = \max \left\{ \begin{array}{l} T[X_1, W'], \\ \min \left\{ T[X_2, W' - w_j] - p_j, \right. \right. \\ \left. \left. s_j - p_j. \right. \right. \end{array} \right.$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".



$$T[\vec{s}, W'] = \max \left\{ \min \left\{ T[\text{X}_2, W' - w_j] - p_j, s_j - p_j \right\} \right\}$$

Dynamic Program

Observation 3

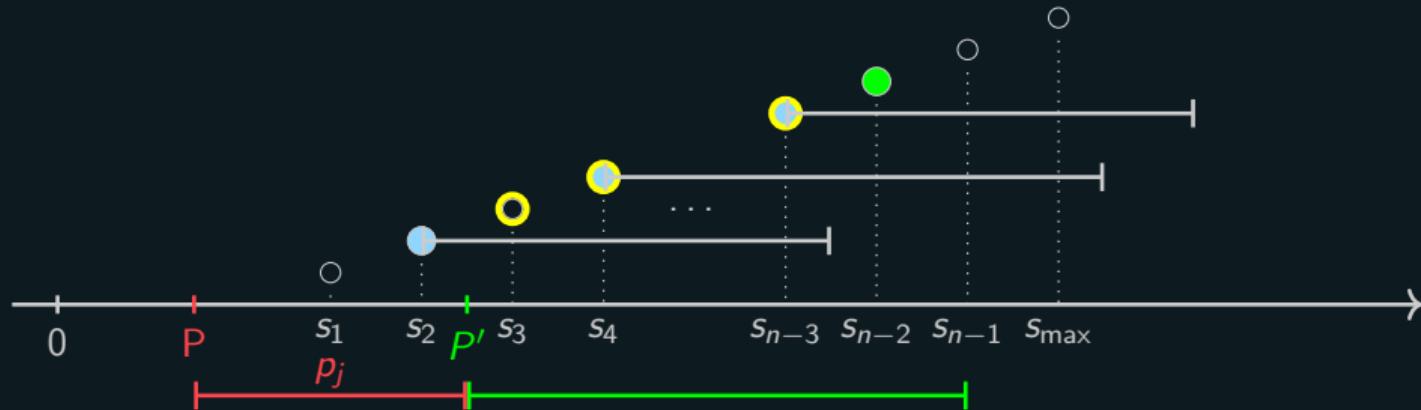
Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".

$$T[\vec{s}, W'] = \max \left\{ \min \left\{ T[\text{X}_2, W' - w_j] - p_j, s_j - p_j \right\} \right\}$$

Dynamic Program

Observation 3

Partial-schedules (over jobs $\{j, \dots, n\}$) with equal W , P and \vec{s} are "equivalent".



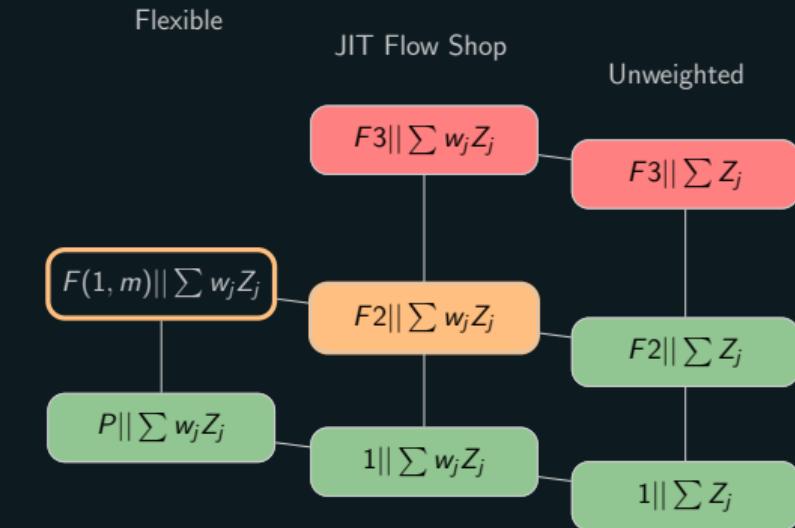
$$T[\vec{s}, W'] = \max \left\{ \min \left\{ T[\text{X}_2, W' - w_j] - p_j, s_j - p_j \right\} \right\}$$

Open Questions

- Is $F(1, m)|q_j = q|w_j Z_j$ NP-hard?

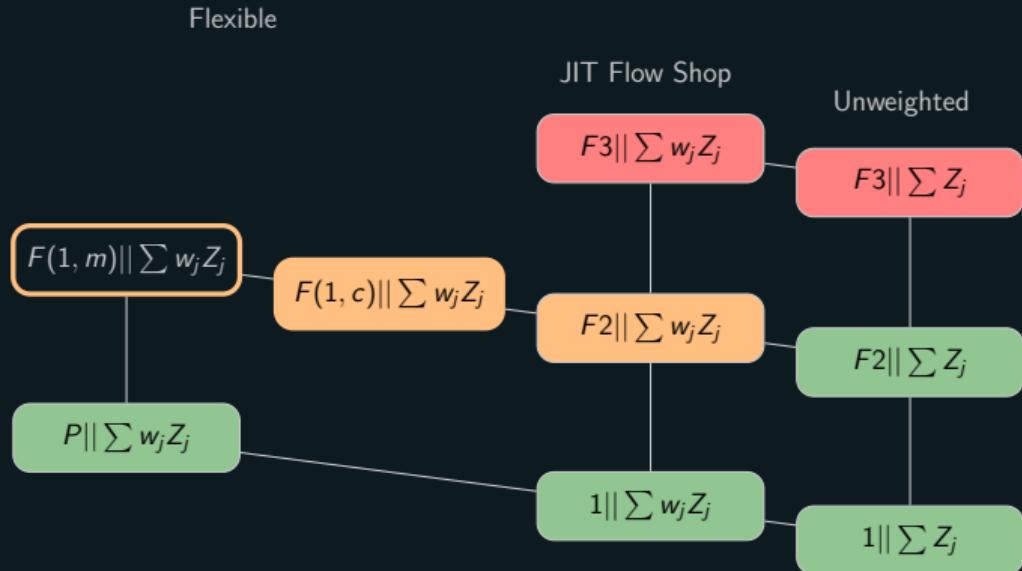
Open Questions

- Is $F(1, m)|q_j = q|w_j Z_j$ NP-hard?



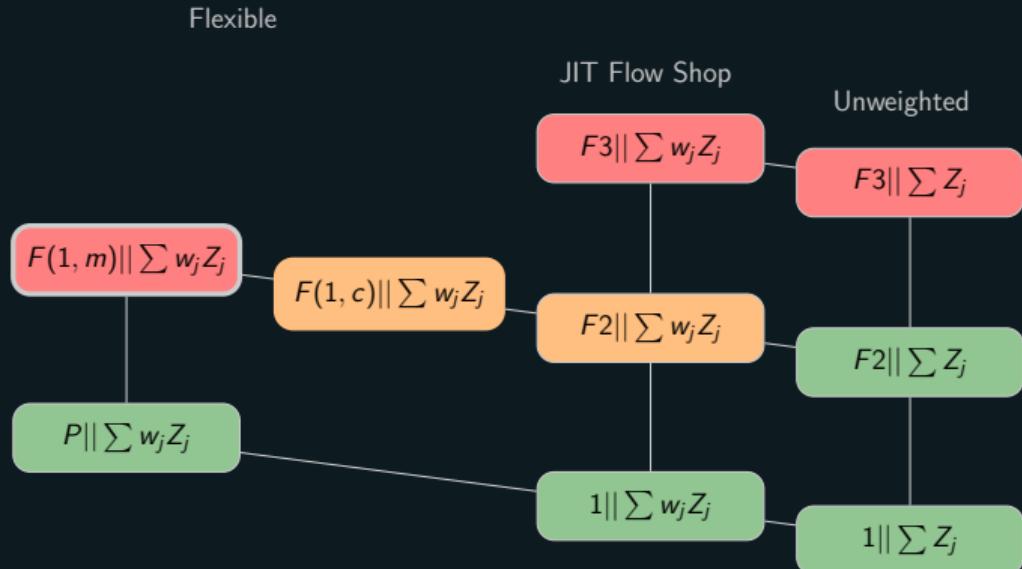
Open Questions

- Is $F(1, m)|q_j = q|w_j Z_j$ NP-hard?



Open Questions

- Is $F(1, m)|q_j = q|w_j Z_j$ NP-hard?



Thanks!

References

- [AS87] Esther M. Arkin and Ellen B. Silverberg. Scheduling jobs with fixed start and end times. *Discrete Applied Mathematics*, 18(1):1–8, 1987.
- [CY07] Byung-Cheon Choi and Suk-Hun Yoon. Maximizing the weighted number of just-in-time jobs in flow shop scheduling. *Journal of Scheduling*, 10:237–243, 2007.
- [Gol88] Martin Charles Golumbic. Algorithmic aspects of intersection graphs and representation hypergraphs. *Graphs and Combinatorics*, 4(1):307–321, 1988.
- [SB12] Dvir Shabtay and Yaron Bensoussan. Maximizing the weighted number of just-in-time jobs in several two-machine scheduling systems. *Journal of Scheduling*, 15(1):39–47, 2012.