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Problem Definition

Two-Stage Flow Shop Interval Scheduling
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Input:

A set of n jobs, each job j has:

• due date dj

• processing time qj

• preprocessing time pj

• weight wj

. . .
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Problem Definition

Two-Stage Flexible Flow Shop Interval Scheduling

F (1,m)||
∑

wjZj

Input: A set of n jobs, each job j has:

• due date dj

• processing time qj

• preprocessing time pj

• weight wj

For the preprocessing we have 1 machine, for the

processing we have m identical machines.

Output: Maximum weighted JIT schedule. . . .
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Related Work

Interval Scheduling

• O(n log n) time solvable single machine [Gol88].

• O(n2 log n) time solvable multiple machines [AS87].

Two-Stage ����Flexible JIT Flow Shop
• NP-hard even when qj = 1 (m = 1) [CY07]

• When wj = 1 O(n4) time solvable [CY07].

• Pseudo-polynomial time solvable [SB12].

• When wj = 1 O(n3) time solvable [SB12].

Three-Stage ����Flexible JIT Flow Shop
• Strongly NP-hard even when wj = 1 [CY07].
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Key Observations

Observation 1

The jobs can be preprocessed in ascending order of start times of the second stage.

Observation 2
Optimally, the first stage machine has no idle time.
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Hardness

Hitting Set:

Input: A family F ofm subsets of a universe U = {1, . . . , n}, and an integer k.
Question: Is there a set H ⊆ U with |H| = k and |H ∩ F | ≥ 1 for every F ∈ F?

U = {1, 2, 3} , F = {F1 = {2, 3},F2 = {1, 2},F3 = {1, 3}} , k = 2

5



Hardness

1

2
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Dynamic Program

Observation 3

Partial-schedules (over jobs {j , . . . , n}) with equal W , P and s⃗ are ”equivalent”.

0

smaxsn−1sn−2sn−3

. . .

s4s3s2s1

P P ′
pj

P ′
pj

T [s⃗,W ′] = max


T [X1,W

′],

min

{
T [X2,W

′ − wj ]− pj ,

sj − pj .
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